1. Verify Eular's theorem for the function
u = tan–¹ (x²+y²/x–y)
Sol:
u = tan–¹ (x²+y²/x–y)
tan u = (x²+y²/x–y) = f
n = 3 -1 = 2
By Eular's theorem for homogeneous function f in x and y
x ∂f/∂x + y ∂f/∂y = n.f
x ∂/∂x (tan u) + y ∂/∂y(tan u) = 2x tan u
x sec²u ∂u/∂x + y sec²u ∂u/∂y = 2tan u
x ∂u/∂x + y ∂u/∂y = 2tan u/ sec²u
x ∂u/∂x + y ∂u/∂y = 2sin u/cos u ÷ 1/cos²u
x ∂u/∂x + y ∂u/∂y = 2sin u x cos²u/cos u
x ∂u/∂x + y ∂u/∂y = sin 2u
Proved
Note:
{ 2sinacosa = sin2a}
2. lim x tends a [ x^n - a^n /x-a]
Sol:
Putting x = a = (0/0)
By L' hospital rule
lim x tends a ( nx^n-1 - 0 / 1- 0)
= na^ n-1
Thanks for watching....
Share and comment kare.....
0 Comments