1. If u = log ( x³ + y³ + z³ - 3xyz)
(∂/∂x + ∂/∂y + ∂/∂z)² u = 9 / (x +y +z)²
(∂ = Dell)
Sol:
u = log ( x³ + y³ + z³ - 3xyz)
∂u/∂x = 3x² - 3yz / x³ + y³ + z³ - 3xyz
∂u/∂y = 3y² - 3zx / x³ + y³ + z³ - 3xyz
∂u/∂z = 3z² - 3xy / x³ + y³ + z³ - 3xyz
∂u/∂x + ∂u/∂y + ∂u/∂z =
3x² - 3yz+ 3y² - 3zx+ 3z² - 3xy / x³ + y³ + z³ - 3xyz
∂u/∂x + ∂u/∂y + ∂u/∂z =
3x² +3y²+3z² - 3yz - 3zx - 3xy/ x³ + y³ + z³ - 3xyz
∂u/∂x + ∂u/∂y + ∂u/∂z =
3(x² +y²+z² - yz - zx - xy) / (x+y+z)(x² +y²+z² - yz - zx - xy)
∂u/∂x + ∂u/∂y + ∂u/∂z = 3 / (x+y+z)
Now ,
(∂/∂x + ∂/∂y + ∂/∂z)² u =
(∂u/∂x + ∂u/∂y + ∂u/∂z) × (∂u/∂x + ∂u/∂y + ∂u/∂z)
(∂/∂x + ∂/∂y + ∂/∂z)² u =
3/ x+y+z × 3/ x+y+z = 9 / (x +y +z)²
Proved that
Thanks for watching.......
Share and comment kare...
।।
0 Comments