Header Ads Widget

Prove that loga(m×n) = loga(m) + loga(n)

1. Prove that

loga(m×n) = loga(m) + loga(n)



Proof:

Put loga m = x

Loga n = y


Then by defn

m = a^x and n = a^y

चूकी ( m×n = a^x +a^y = a^ x+y)


Thus by defn we get


x+y = loga(m×n)


Hence

loga(m×n) = loga(m) + loga(n),



2. Prove that

loga(m/n) = loga m - loga n.


Proof

Put loga m = x

Loga n = y


Then by defn

We have 

m = a^x and n = a^y


चूकी ( m/n = a^x /a^y = a^ x-y)


So From defn we get


 loga(m/n) = x-y 


Hence

loga(m/n) = loga(m) - loga(n),


3. Prove that 

Loga (m^n) = nloga(m)


Sol

Put loga m = x 

Then by defn

m = a^n

m^n = (a^x) + a^nx


Hence

loga (m^n) = nx = n loga m.



4. Prove that

loga m = logb m × loga b.


Sol:

Let x = loga m,

And y = loga b

Then

a^x = m

And

b^y = m


♣ a^x = b^y =⟩ (a^x)¹/y = b

                        =⟩ a^ x/y = b


♣ loga b = x/y = loga m/ loga b


Hence


loga m = logb m × loga b.






Thanks for watching... . ..





Share and comment kare........





Post a Comment

0 Comments