1. If a² +b² = 7ab , prove that
2log(a+b) = log9 + loga + logb
Sol:
a² +b² = 7ab
Add both side 2ab , We get
a² +b²+ 2ab = 7ab+2ab
(a+b)² = 9ab
Now taking log both side, we get
log(a+b)² = log9ab
2log(a+b) = log9 +loga + logb.
2. Prove that
log 35/78 = log7+ log5 - log2- log3- log13
Sol: log 35/78
= log (5×7) - log (2×3×13)
=(log7+log5) - (log2+log3+log13)
[Note: log(mn)= logm+logn]
Or
log 35/78 = log7+ log5 - log2- log3- log13
3. Find out the value of log10(135)
Sol: We know that
log(m+n) = logm + logn
log10(135) = log10(3×3×3×5)
= log10(3³×5)
= log10(3³)+ log10(5)
= 3 × 0.4771 + 0.6990
= 1.4313+ 0.6990
= 2.133
Thanks for watching.........
Share and comment kare.........

0 Comments