1.Find the logarithm of 5832 to the base ³✓2 ya (3✓2).
Sol:
Let log 3✓2(5832) = x then by definition we get
(3✓2)^x = 5832 = 8 × 729 = 2³ × 3⁶
Or,
(3✓2)^x = [(✓2)²]³ × 3⁶
= (✓2)⁶ × 3⁶ = (3✓2)⁶
(3✓2)^x = (3✓2)⁶ =⟩ x = 6
2. If log10(55) = 1.7404
log10(93) = 1.9685
Find
(I) log10 55 × 93
Sol: (I) log10 55 × 93
= log10 55 + log10 93
= 1.7404 + 1.9685
= 3.7089
3. If log10(3) = .4774 and
log10(2) = .3010 then find log2(3).
Sol: We have
log2(3) = log10(3) / log10(2)
log2(3) = .4771 / .3010
log2(3) = 1.5850
4. Find the value of log8 (128).
Sol: log8 (128) = log8⁷/³ (8⁷/³ = 128)
log8 (128) = ⁷/³log 8⁸
= 7/3 × 1 = 7/3
(Loga^a = 1)
5. Evaluate:
log10(81) / log10 (27)
Sol:
log10(81) / log10(27) = log10(3⁴) / log10 (3³)
log10(81) / log10(27) = 4log10³/3log10³
log10(81) / log10(27) = 4/3
log10(81) / log10(27) = 1.33
Thanks for watching..........
Share and comment kare.......

0 Comments