1. Show the sequence<Sn> defined by:
Sn = √(n+1) –√n ∀ n ∈ N is convergent.
[Note: ∀ = सभी के लिए]
[Note: ∈ = सदस्य हैं]
Sol: we have Sn = √(n+1) –√n
Sn = {√(n+1) –√n} × {√(n+1) +√n} ÷ {√(n+1) +√n}
Sn = 1 / √(n+1) +√n < 1/√n+√n =
1/√2n < 1/√n
i.e., Sn<1/√n,
Let ∈ > 0, then | Sn – 0 | < 1/√n < ∈ provided √n> 1/∈ i.e. , n > 1/∈²
If m is a positive integer greater than 1/∈² then | Sn – 0 | < ∈ for all n≥m hence lim Sn= 0.
Thanks for watching......
Share and comment kare........
0 Comments