1. Differentiate the function
y = 4x³+ e^x + sinx
Sol: y = 4x³+ e^x + sinx
[Note: d(x^n)/dx = nx^n-1, d(e^x)/dx = e^x,
d(sinx) /dx = cosx]
dy/dx = 4×3x³-¹ +e^x +cosx
dy/dx = 12x² +e^x +cosx.
2. Differentiate 4e^x – 5logx
Sol: 4e^x – 5logx
= d/dx ( 4e^x – 5logx)
= d/dx(4e^x) – d/dx(5logx)
= 4d/dx(e^x) – 5d/dx(loge^x)
= Ae^x– 5/x
3. Differentiate cofficient logsinx.
Sol: We have
=d/dx(logsinx)
=1/sinx d/dx(sinx)
=1/sinx (cosx)
= Cosx/sinx
= cotx
4. Find the derivatives of x⁹.
Sol:
We know that
d/dx(x^n) = nx^n-1
So, We have
d/dx(x⁹) = 9x(⁹-¹)
d/dx(x⁹) = 9x⁸.
5.Find the derivatives of x-³.
Sol:
We know that
d/dx(x^n) = nx^n-1
So, We have
d/dx(x-³) = -3x(-³-¹)
d/dx(x-³) = -3x-⁴
d/dx(x-³) = -3/x⁴.
Thanks for watching.......
Share and comment kare.......
0 Comments