Header Ads Widget

Differentiate the function (y = 4x³+ e^x + sinx)

1. Differentiate the function

y = 4x³+ e^x + sinx 


Sol: y = 4x³+ e^x + sinx 


[Note: d(x^n)/dx = nx^n-1, d(e^x)/dx = e^x,


d(sinx) /dx = cosx]




dy/dx = 4×3x³-¹ +e^x +cosx


dy/dx = 12x² +e^x +cosx.




2. Differentiate 4e^x – 5logx

Sol: 4e^x – 5logx


= d/dx ( 4e^x – 5logx)


= d/dx(4e^x) – d/dx(5logx)


= 4d/dx(e^x) – 5d/dx(loge^x)


= Ae^x– 5/x






3. Differentiate cofficient logsinx.

Sol: We have


=d/dx(logsinx)


=1/sinx d/dx(sinx)


=1/sinx (cosx)


= Cosx/sinx


= cotx




4. Find the derivatives of x⁹.

Sol:


We know that


d/dx(x^n) = nx^n-1


So, We have


d/dx(x⁹) = 9x(⁹-¹)


d/dx(x⁹) = 9x⁸.






5.Find the derivatives of x-³.

Sol:


We know that


d/dx(x^n) = nx^n-1


So, We have


d/dx(x-³) = -3x(-³-¹)


d/dx(x-³) = -3x-⁴


d/dx(x-³) = -3/x⁴.












Thanks for watching.......










Share and comment kare.......



Post a Comment

0 Comments